
1Wei R, et al. J Neurol Neurosurg Psychiatry 2022;0:1–7. doi:10.1136/jnnp-2022-329680

Original research

Brain age gap in neuromyelitis optica spectrum 
disorders and multiple sclerosis
Ren Wei,1 Xiaolu Xu  ‍ ‍ ,1 Yunyun Duan  ‍ ‍ ,1 Ningnannan Zhang,2 Jie Sun,2 
Haiqing Li,3 Yuxin Li,3 Yongmei Li,4 Chun Zeng,4 Xuemei Han,5 Fuqing Zhou,6 
Muhua Huang,6 Runzhi Li,7 Zhizheng Zhuo,1 Frederik Barkhof,8,9 James H Cole  ‍ ‍ ,9,10 
Yaou Liu  ‍ ‍ 1

Multiple sclerosis

To cite: Wei R, Xu X, Duan Y, 
et al. J Neurol Neurosurg 
Psychiatry Epub ahead of 
print: [please include Day 
Month Year]. doi:10.1136/
jnnp-2022-329680

	► Additional supplemental 
material is published online 
only. To view, please visit 
the journal online (http://​dx.​
doi.​org/​10.​1136/​jnnp-​2022-​
329680).

For numbered affiliations see 
end of article.

Correspondence to
Professor Yaou Liu, Department 
of Radiology, Beijing Tiantan 
Hospital, Beijing, China; ​
yaouliu80@​163.​com

RW and XX contributed equally.

Received 27 June 2022
Accepted 12 September 2022 ©lAuthor(s) (or their 

employer(s)) 20c2. No 
commercial re-

use

. See rights and permissions. Published 
by BMJ.A

B

S

T

R

A

C

T

O b j e c t i v e

 

T
o  e v a l u a t e  t h e  c l i n i c a l  s i g n i fi c a n c e  o f  d e e p  

l e a r n i n g -



d e r i v e d  b r

a i n  a g e  p r e d i c t i o n  i n  n e u r o m y e l i t i s  

o p t i c a  s p e c t r u m  d i s o r d e r  ( N M O S D )  r e l a t i v e  t o  r e l a p s i n g -



r e m i t t i n g  m u l t i p l e  s c l e r o s i s  ( R R M S ) .
M e t h o d s
 

T
h i s  c o h o r t  s t u d y  u s e d  d a t a  r e t r o s p e c t i v e l y  c o l l e c t e d  f r o m  6  t e r t i a r y  n e u r o l o g i c a l  c e n t r e s  i n  C h i n a  
b e t w e e n  2 0 0 9 2 a n d  2 0 1 8 .  I n  t o t a l ,  1 9 - 1 p a t i e n t s  w i t h  
N M O S D 2 a n d  2 0 0 1 p a t i e n t s  w i t h  R R M S  w e r e  s t u d i e d  
a l o n g s i d e  2 
 1 c h e a l t h y  c o n t r o l s .  C l i n i c a l  f o l l o w -



u
p

 
w

a s  a v a i l a b l e  i n  0  2 p a t i e n t s  w i t h  N M O S D 2 a n d  1 2 4 2 p a t i e n t s  
w i t h  R R M S  ( m e a n  d u r a t i o n  N M O S D = 5 . 8 ± 0 0 7  ( 0 0 7 � 9 0 7 )  
y e a r s ,  R R M S = 5 . 2 ± 0 0 7  ( 0 0 5 � 9 0 2 )  y e a r s ) .  D e e p  l e a r n i n g  
w a s  u s e d  t o  l e a r n  � b r a i n  a g e �  f r o m  M R I  s c a n s  i n  t h e  
h e a l t h y  c o n t r o l s 2 a n d  e s t i m a t e  t h e  b r a i n  a g e  g a p  ( B A G )  
i n  p a t i e n t s .
R e s u l t s

 

A  s i g n i fi c a n t l y  h i g h e r  B A

G  w a s  f o u n d  i n  t h e  N M O S D 2 ( 5 . 4 ± 8 . 2  y e a r s ) 2 a n d  R R M S  ( 1 3 2 0 ± 0 4 0 7  
y e a r s ) 2 g r o u p s  c o m p a r e d  w i t h  h e a l t h y  c o n t r o l s .  A  h i g h e r  
b a s e l i n e  d i s a b i l i t y  s c o r e  a n d  a d v a n c e d  b r a i n  v o l u m e  l o s s  
w e r e  a s s o c i a t e d  w i t h  i n c r e a s e d  B A G  i n  b o t h  p a t i e n t  
g r o u p s .  A  l o n g e r  d i s e a s e  d u r a t i o n  w a s  a s s o c i a t e d  w i t h  
i n c r e a s e d  B A G  i n  R R M S .  B A G  s i g n i fi c a n t l y  p r e d i c t e d  
E x p a n d e d  D i s a b i l i t y  S t a t u s  S c a l e  w o r s e n i n g  i n  p a t i e n t s  
w i t h  N M O S D 2 a n d  R R M S .
C o n c l u s i o n s

  Th e r e  i s  a  c l e a r  B A G  i n  N M O S D ,  a l t h o u g h  s m a l l e r  t h a n  i n  R R M S .  T h e  B A G  i s  a  c l i n i c a l l y  r e l e v a n t  
M R I  m a r k e r  i n  N M O S D 2 a n d  R R M S . I
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A g e  i s  a n  i n d e p e n d e n t  m a r k e r  f o r  d i s e a s e  p r o g r e s

-

s i o n  i n  n e u r o m y e l i t i s  o p t i c a  s p e c t r u m  d i s o r d e r  ( N M O S D )
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In this study, we used a novel deep-learning brain age model 
to investigate the utility of BAG as a neuroimaging biomarker 
to predict EDSS worsening in NMOSD and RRMS in a large 
multicentre dataset.

METHODS
Participants
Data from patients with NMOSD and RRMS were retrospec-
tively collected from six tertiary neurological centres in China 
covering the period between November 2009 and April 2018. 
Patients who fulfilled the following criteria were included: (a) 
confirmed diagnosis of NMOSD according to 2015 revised diag-
nostic criteria8 or RRMS according to 2017 McDonald criteria9; 
(b) complete demographic and clinical information, including 
baseline EDSS score and disease duration and (c) good quality 
baseline three-dimensional (3D) T1-weighted structural images 
(T1WI). Clinical evaluation, diagnosis, treatment and follow-up 
assessments of the participants were conducted at each centre 
by local neurologists with expertise in demyelinating diseases. 
EDSS worsening was defined as an increase in EDSS score ≥1.0 
for baseline EDSS ≤5.5 or an increase in EDSS score ≥0.5 for 
baseline EDSS >5.5, as previously published.10

Data for deep learning model training
Training data for our deep learning-derived brain age included 
MRI scans from healthy controls (HCs, n=9794) from publicly 
available datasets, including Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), The Australian Imaging, Biomarkers and 
Lifestyle (AIBL),11 Brain Genomics Superstruct Project (GSP)12 
and Southwest University Longitudinal Imaging Multimodal 
(SLIM),13 as well as a group of healthy people scanned at Beijing 
Tiantan Hospital from January to December 2019 (online supple-
mental table 1, online supplemental figure 1). After training, the 
model was tested on two further independent datasets. Internal 
validation data comprised another group of healthy participants 
(n=462) scanned at Beijing Tiantan Hospital from January to 
April 2020 on two different scanners (see online supplemental 
table 1). The external validation dataset included HCs from the 
multicentre NMOSD and MS cohorts (n=267).

https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://www.applied-statistics.de/lst.html
http://jnnp.bmj.com/
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Performance of the brain age prediction model
Model training (using 9794 HCs) was terminated at epoch 
108. The mean absolute error (MAE) before inverse linear bias 
correction was 2.63 years in the developmental validation set, 
and this model was used as the final model for further analysis.

The model was then tested using 462 images for internal 
(across-scanner) validation and 267 images for external valida-
tion (across-centre). In the internal validation dataset, the MAE 
was 2.9±3.1 years, with no significant difference across scanner 
types (p=0.581, n=2). The Pearson’s correlation coefficient (r) 
between age and brain age was 0.957. In the external validation 
set, the MAE was 4.5±3.9 years, and the Pearson’s r was 0.890. 
The MAE was not significantly different across different centres 
(p=0.660, n=5; online supplemental table 2).

Increased BAG in NMOSD and RRMS compared with healthy 
controls
The difference in BAG among patients with NMOSD, patients 
with RRMS and HCs was relatively consistent across base-
line chronological ages (figure  1A). At baseline, patients with 
NMOSD had a significantly higher BAG than HCs (NMOSD−
HC=4.6 years, 95% CI 2.4 to 6.9, p<0.001), but patients with 
RRMS had a markedly higher BAG than HCs (MS−HC=12.1 
years, 95% CI 9.9 to 14.3, p<0.001). BAG was lower in 
NMOSD than in RRMS (NMOSD−RRMS=−7.5 years, 95% 
CI 5.2 to 9.9, p<0.001) (table 1, figure 1B).

Furthermore, we performed subgroup analyses of BAG in 
AQP4 seropositive versus seronegative patients with NMOSD, 
as well as in patients with NMOSD with versus without brain 
lesions. We observed that there was no significant difference in 
BAG between the AQP4 seropositive and seronegative subgroups 

(5.8±8.8 vs 4.2±6.9 years, p=0.256). However, the BAG in 
patients with brain lesions was significantly higher than those 
without (7.1±8.5 vs 3.4±7.2 years, p=0.001) (online supple-
mental table 5).

A significant difference in BAG across centres (p<0.001) was 
noted, although post hoc analysis revealed consistent trends in 
disease effects on BAG in all six centres (figure  1C). Sample 
images and the corresponding output from both the NMOSD 
and RRMS groups were provided for better understanding 
(figure 1D–G).

The correlation between raw and lesion-filled 3D T1WI 
images was very high (R2=0.984, p<0.001, online supplemental 
figure 3A). A Bland-Altman plot showed that the mean differ-
ence between raw and lesion-filled brain age was 0.28±2.11 
years with no apparent systematic bias (online supplemental 
figure 3B), indicating that the lesion filling process did not have 
a particular impact on the model.

Correlation of BAG with clinical variables
At baseline, univariate linear regression analysis demon-
strated that BAG was positively associated with EDSS in both 
the NMOSD and RRMS groups (NMOSD r=0.217, β=0.86, 
p=0.002; RRMS r=0.268, β=2.31, p<0.001; figure  2A). 
Normalised brain volume was inversely associated with BAG 
in both NMOSD and RRMS groups (NMOSD r=−0.202, 
β=−48.5, p<0.001; RRMS r=−0.384, β=−126.9, p<0.001; 
figure 2B). Multivariable linear regression found that BAG was 
positively predictive of baseline EDSS independent of normalised 
brain volume and disease duration (NMOSD p=0.030; RRMS 
p=0.009; online supplemental table 3).

Table 1  Demographic characteristics, baseline status and deep learning-derived brain age of participants

NMOSD RRMS HCs P value

Baseline

 � N 199 200 269

 � Age at baseline, year (min–max) 41.0±13.0 (16.9–66.0) 37.1±11.4 (16.6–66.9) 38.5±12.7 (17.0–69.0) NMOSD versus HC 0.071
RRMS versus HC 0.468
NMOSD versus RRMS 0.005

 � Female, n (%) 176/199 (88.4) 128/200 (64.0) 152/269 (56.5) <0.001

 � Seropositive for AQP4-IgG, n (%) 84/132 (63.6) – – –

 � First onset to diagnosis, year (min–max) 4.5±5.1 (0.0–35.0) 3.2±4.4 (0.0–21.0) – 0.006

 � Baseline use of DMT, n (%) 52 (26.1%) 86 (43.0%) – –

 � EDSS at baseline, median (IQR) (min–
max)

2.0 (2.0) (0.0–9.0) 3.5 (3.0) (0.0–9.0) – <0.001

 � Brain segmentation volume without 
ventricles, mL (min–max)

1058.9±94.4 (798.7–1390.1) 1080.1±121.5 (742.6–1484.5) 1154.6±98.5 (910.7–1434.0) NMOSD versus HC <0.001
MS versus HC <0.001
NMOSD versus RRMS 0.108

 � Normalised brain volume (min–max) 0.750±0.038 (0.647–0.891) 0.731±0.045 (0.590–0.858) 0.765±0.030 (0.700–0.894) <0.001*

 � Total volume of lesion, mL (min–max) 4.9±8.1 (0.0–43.9) 12.7±17.9 (0.0–134.0) – <0.001*

Deep learning-derived brain age

 � Predicted brain age, year (min–max) 46.4±16.0 (18.8–77.5) 49.8±17.5 (19.5–77.8) 39.3±13.7 (14.8–73.8) <0.001*

 � Brain age gap, year (95% CI) 5.4±8.2 (4.3 to 6.5) 13.0±14.7 (10.9 to 15.0) 0.8±6.2 (0.1 to 1.6) <0.001*

 � Predicted brain age SD, year (95% CI) 6.0±3.0 (5.6 to 6.5) 7.2±4.2 (6.6 to 7.8) 4.8±1.1 (4.7 to 4.9) <0.001*

Follow-up

 � N with follow-up data, n (%) 85 (42.7) 124 (62.0) –

 � Mean follow-up time, year (min–max) 5.8±1.9 (1.9–9.9) 5.2±1.7 (1.5–9.2) – 0.020

 � EDSS worsening, n (%) 31 (36.5) 42 (33.9) – 0.764

Continuous variables other than EDSS are reported as the mean±SD. EDSS is reported as the median (IQR).
*For all pairwise comparisons, that is, for NMOSD versus HC, RRMS versus HC and NMOSD versus RRMS.
DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; HC, healthy control; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; RRMS, 
relapsing-remitting multiple sclerosis.
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We performed 1:1 nearest neighbour propensity score 
matching (PSM)18 to exclude the possible confounding influence 
of clinical variables on BAG. This matching yielded adequate 
balance for all included coefficients. The mean BAG was 5.0±7.1 
years in NMOSD and 11.1±12.7 years in RRMS after adjust-
ment for sex, age at diagnosis, baseline EDSS and normalised 
brain volume, with an estimated difference of −6.1 years (95% 
CI −8.7 to −3.4) years between NMOSD and RRMS (table 2).

The area under the curve of the receiver operating character-
istic for BAG in predicting progression was 0.599 in NMOSD 
and 0.670 in RRMS. The optimal cut-off of BAG was 6.1 (sensi-
tivity 38.7%, specificity 81.5%) for NMOSD and 24 (sensitivity 
50.0%, specificity 80.5%) for RRMS (online supplemental 
figure 4). Kaplan-Meier survival analysis indicated that BAG 
was predictive of progression in both groups. For patients with 
NMOSD, the median time to progression for BAG >6.1 years 
was 5.79 years vs 7.99 years for BAG ≤6.1 years (p=0.003, 
figure  2C). The median time to progression for BAG >24.0 

years was 5.36 years vs 8.95 years for BAG ≤24.0 years in 
patients with RRMS (p=0.002, figure 2D).

https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
http://jnnp.bmj.com/
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Analysis of predicted SD in brain age prediction
The predicted SD was positively associated with BAG in all three 
groups (linear model p<0.001 in HC and NMOSD, p=0.011 
in RRMS, online supplemental figure 5A). The mean SD in 
NMOSD was higher than HC and lower than RRMS (online 
supplemental figure 5B), which was consistent with the trend 
seen in BAG, indicating a higher model uncertainty in those 
images with greater discrepancy between apparent and chrono-
logical age. We examined scans with high model uncertainty 
and found that some of them could be attributed to low image 
quality or incomplete anatomical coverage (online supplemental 
figure 5C), while others were not visually distinguishable from 
those with lower model uncertainty (online supplemental figure 
5D). To analyse whether the difference in BAG was driven by the 
difference in predicted SD, we performed PSM with predicted 
SD added as a covariate. The difference in BAG between 
NMOSD and RRMS, as well as NMOSD and RRMS versus HC, 
remained statistically significant after PSM adjusted for age, sex, 
duration to diagnosis, baseline EDSS, normalised brain volume 
and predicted SD (p<0.001, online supplemental table 4).

DISCUSSION
In this study, we developed a deep learning model to accurately 
predict age from 3D structural MRI scans and demonstrated 
its robustness in the context of multiple centres and MRI scan-
ners. Using this model, the BAG was estimated to be approxi-
mately +5 years in NMOSD and +13 years in RRMS. Baseline 
BAG was independently predictive of EDSS worsening in both 
NMOSD and RRMS, suggesting its additional clinical value as 
a non-invasive biomarker for early triage, stratified follow-up 
management and clinical trial enrolment.

Previous non-deep learning studies on age prediction 
tasks reported 2.9-year to 5.0-year MAEs on their valida-
tion sets7 19 20 (some of which included multimodality-derived 
features, including functional MRI and diffusion tensor imaging), 
while deep learning studies reported validation MAEs as low as 
2.14 years, such as in the original SFCN study.17 We reached 
similar performance levels of MAE=2.5 years in the develop-
mental validation set, and the performance was maintained in an 
internal test set, demonstrating the usefulness of our model and 
highlighting the versatility and potential of deep learning-based 
methods. We have also shown that the whole-brain CNN-based 
model was robust within scanners and centres, supporting the 
clinical use of the brain age paradigm.

BAG has been investigated extensively as a comprehensive 
biomarker for accelerated ageing. Increased BAG has been 

observed in dementia,21 epilepsy22 and traumatic brain injury.23 
We report for the first time the meaningfulness of BAG in 
NMOSD as well as the difference between NMOSD and RRMS. 
We found a BAG of 5.4 (95% CI 4.3 to 6.5) years in patients with 
NMOSD, which, although lower than RRMS, is still marked 

https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
http://jnnp.bmj.com/
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indicates that the brains of patients with RRMS appear older 
than those of patients with NMOSD even at the same level of 
atrophy, implying that BAG can be seen as a global estimation 
that integrates information beyond simple brain volumetry while 
being more accessible and informative than tables of volumetric 
measurements.

The uncertainty and distributional pattern of predicted brain 
age is an important field of research that has attracted little 
attention. A recent study modelled brain age uncertainty with a 
single-layer neural network that addressed aleatoric uncertainty 
with quantile regression and epistemic uncertainty with the 
Monte Carlo dropout technique.25 In contrast to other studies 
that use quantile regression, the novel method in our study 
renders aleatoric uncertainty a natural derivative since the model 
output itself is a distribution instead of the point estimate used 
in previous studies.4 Epistemic uncertainty was not derived in 
this study due to computational cost. Although the uncertainty 
correlated positively with BAG, the PSM analysis indicated that 
the BAG difference between NMOSD and RRMS remained 
statistically significant even after adjustment for predicted 
SD. We observed that the predicted SD were higher in those 
scans without enough information for brain age inference (ie, 
low image quality, etc), and in those with a greater discrepancy 
between predicted and actual age. This observation suggests a 
potential use case for the predicted SD. The quantification of 
individual-level uncertainty in this way could provide an inte-
grated, intuitive metric for image quality control, especially in 
healthy people, as well as provide a measure of ‘confidence’ for 
applications in clinical contexts.

Our study has a few limitations. First, the follow-up duration 
was relatively short, and the sample size of patients with follow-up 
was small, which may have introduced selection bias. Second, 
although previous studies have suggested the longitudinal utility 
of brain age in healthy cohorts6 and accelerated ageing measured 
by BAG has been observed in MS cohorts,7 our cohort lacked 
sufficient follow-up assessments for this type of analysis. Finally, 
the interpretability of the results needs to be further improved; 
specifically, the anatomical meaning of brain age remains ill-
defined. Deep learning-based methods have been cast as ‘black 
boxes’; however, tools such as class activation mapping, guided 
backpropagation and occlusion analysis are emerging that aim to 
extract mechanistic information from the network.26 However, 
the translation of these methods to 3D data is complex, and they 
have yet to be validated for use in interpreting medical imaging 
data. Additionally, our study relied on 3D T1WI MRI, which is 
not always available in clinical contexts. Future work will take 
advantage of brain age models developed to work on routine 
clinical two-dimensional scans.27

In conclusion, NMOSD demonstrated a significant BAG 
compared with HCs, although less marked than RRMS. BAG 
is a predictive biomarker of EDSS worsening in both NMOSD 
and RRMS.
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